

Don't worry, Boss – it's all chemistry!

(1) Analysis of the Reactions used for the Preparation of Drug Candidate Molecules, Carey, J. S. (GSK); Laffan, D. (Astrazeneca); Thomson, C. (Astrazeneca); Williams, M.T. (Pfizer) *Org. Biomol. Chem.* **2006**, *4*, 2337.

(2) Industrial Methods for the Production of Optically Active Intermediates,

Hauer, B. (BASF) et al. Angew. Chem. Int. Ed. 2004, 43, 788.

(3) The Chemistry IgNobel Prizes.

Group Meeting – Literature Presentation

07.11.08

Aman Desai

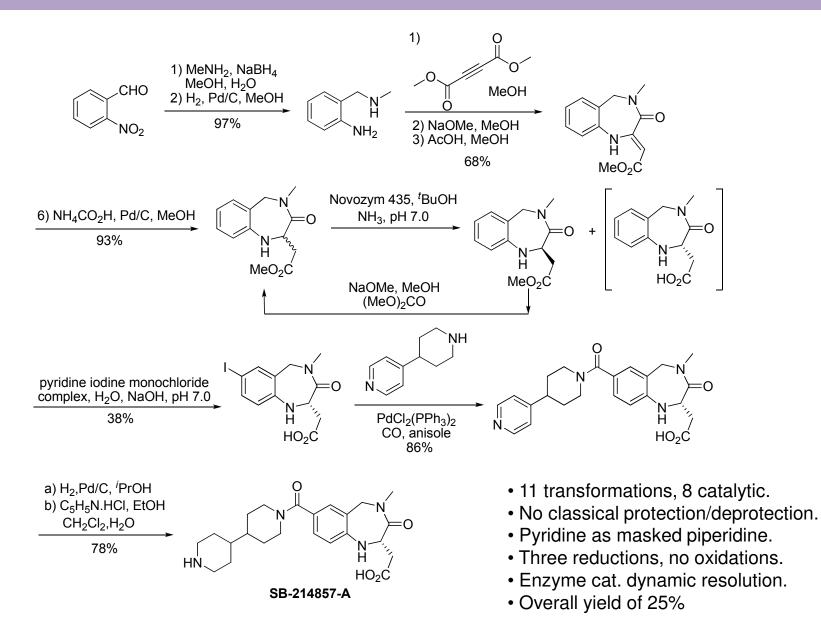
(1) Analysis of the Reactions used for the Preparation of Drug Candidate Molecules,

Carey, J. S. (GSK); Laffan, D. (Astrazeneca); Thomson, C. (Astrazeneca); Williams, M.T. (Pfizer) *Org. Biomol. Chem.* **2006**, *4*, 2337.

(2) Industrial Methods for the Production of Optically Active Intermediates, Hauer, B. (BASF) *et al. Angew. Chem. Int. Ed.* **2004**, *43*, 788.

(3) The Chemistry IgNobel Prizes.

Analysis of the Reactions used for the Preparation of Drug Candidate Molecules


Purpose

Indicate the range of chemistries used in the manufacture of drug candidate molecules (Process Chemistry).

Methodology & Data Set

Syntheses of 128 drug candidates analyzed (equally divided between Pfizer, AstraZeneca and GlaxoSmithKline), covering all therapeutic/geographical areas.

Typical Example of a Process Chemistry R & D Synthesis

Headline data

Number of syntheses	128
Total # of chemical transformations	1039
Average # of chemical transformations per syntheses	8.1
# of chiral compounds	69
# of chiral centers	135
# of chiral centers generated	61
# of substituted aromatic s.m.	206
New aromatic heterocycles formed	54

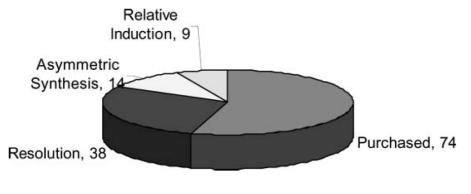
Headline data & Reaction Categories

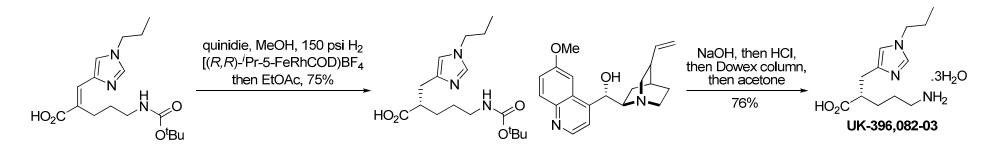
Number of syntheses	128
Total # of chemical transformations	1039
Average # of chemical transformations per syntheses	8.1
# of chiral compounds	69
# of chiral centers	135
# of chiral centers generated	61
# of substituted aromatic s.m.	206
New aromatic heterocycles formed	54

Salt breaking and recrystallizations not included.

Reaction Category	
Molecular Construction Reactions	
Heteroatom alkylation & arylation	19%
Acylation	12%
C-C bond forming	11%
Aromatic heterocycle formation	5%
Modifying Reactions	
Deprotection	15%
Protection	6%
Reduction	9%
Oxidation	4%
Functional group interconversion	10%
Functionalgroup addition	3%
Resolution	3%
Miscellaneous	3%

Chirality



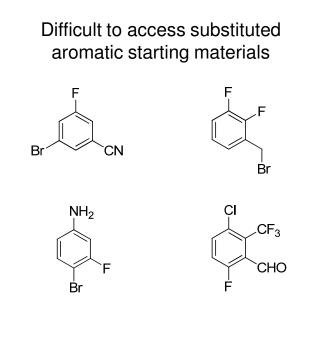

Fig. 3 Source of chiral centres

Resolution

65% – classical salt formation – preferred due to the availability of screening methods, increased understanding of crystallizations and the ease of scale-up.

Remainder – evenly distributed between dynamic kinetic, chromatographic and enzymatic.

Asymmetric synthesis often does not afford the target enantiomeric purity directly.



Efficient construction followed by resolution more preferred than asymmetric synthesis.

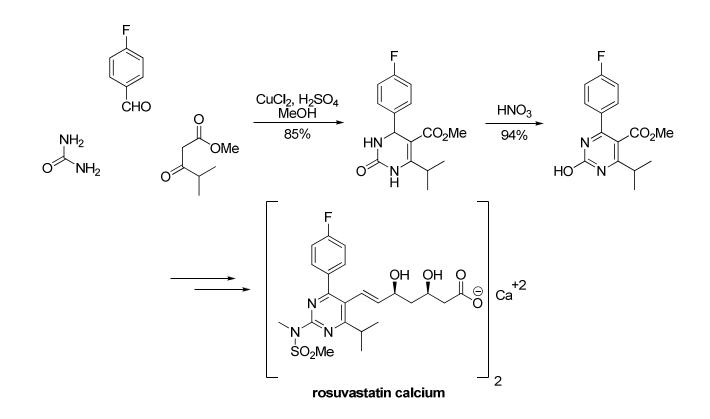
Asymmetric transformations more often carried out on small molecules by fine chemicals industry than on drug-like molecules late in synthesis.

Substituted Aromatic Starting Materials

Substitution pattern	Frequency
1,2-Ph	11%
1,3-Ph	12%
1,4-Ph	27%
1,2,3-Ph	9%
1,2,4-Ph	32%
1,3,5-Ph	4%
1,2,3,4-Ph	3%
1,2,3,5-Ph	1%
1,2,4,5-Ph	1%

Heterocycle Occurrence and Formation

Purchased heterocycles	# of examples	Frequency	Most commo	only occurring	aromatic heter	ocycles
N-containing	54	92%	Heterocycle	# purchased	# synthesized	Total
O-containing	4	7%	Pyridine	23	3	26
S-containing	3	5%	Quinazoline	12	5	17
Total	64		Pyrazole	3	5	8
Synthesized heterocycles	# of examples	Frequency	Pyrimidine	4	3	7
N-containing	53	98%	1,2,4- Triazole	0	7	7
O-containing	10	19%	Thiazole	1	4	5
S-containing	5	9%				
Total	68					


~70% of the 5-membered rings were synthesized.

~70% of the 6-membered rings were purchased.

Heterocycle Occurrence and Formation

Most of the heterocycle forming reactions were either condensations (24 examples) or cyclodehydrations (12 examples), only four examples were cycloaddition reactions.

Example of the general trend in the use of established condensation chemistry:

Protections and Deprotections

Protections account for 6% of total chemical transformations.

Deprotections account for 15%.

On a positive note, 45 out of 128 syntheses were achieved without their use, and had fewer # of overall steps.

Protections

Deprotections

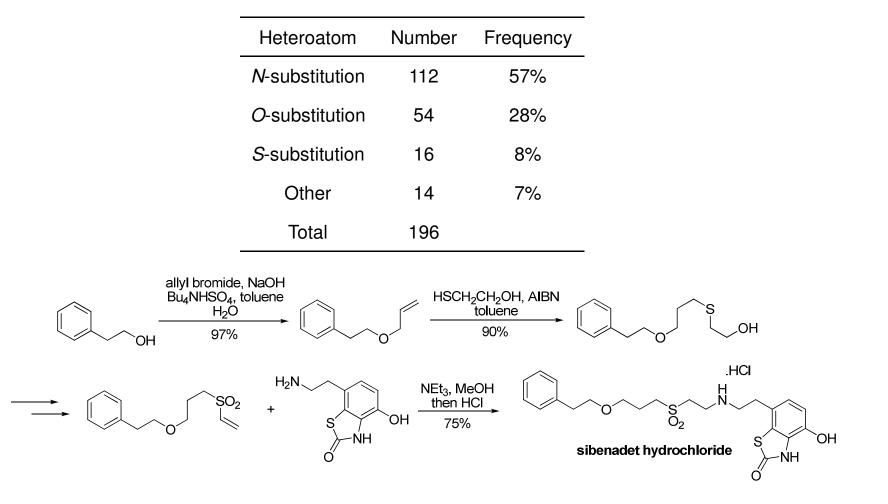
Functional group	Frequency	Functional group	Frequency
Amino (<i>N</i> -Boc, <i>N</i> -Cbz/Bn)	39%	Amino (<i>N</i> -Boc, <i>N</i> -Cbz/Bn)	47%
Hydroxyl (<i>O-</i> Bn, <i>O</i> -SiR ₃ , <i>O</i> -Ac)	30%	Hydroxyl (<i>O-</i> Bn, <i>O</i> -SiR ₃ , Ar- <i>OR</i>)	14%
Carboxylic acid (methyl/ethyl esters)	28%	Carboxylic acid (methyl/ethyl esters)	29%
Other	3%	Other	10%

Use of silicon protecting groups is small, since they contribute to a lack of crystallinity and can be expensive (except TMS).

Acylations

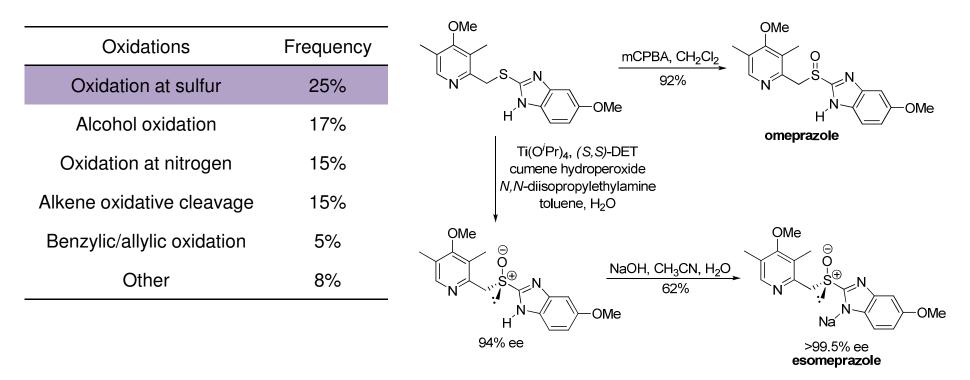
Acylations comprise of 12% of the total reactions.

Acylation	# of	Frequency	N-acylation methods		
-	examples		Method	# of examples	Frequency
<i>N</i> -acylation to amide	84	66%	Acid chloride	37	44%
N-sulfonation to sulfonamide	12	9%	Coupling reagent	21	25%
N-acylation to	8	69/	Mixed anhydride	11	13%
urea		6%	Carbonyl diimidazole	9	11%
Carbamate/ carbonate formation	7	5%	Other Total	6 84	7%
Amidine formation	5	4%	• CDI is gaining popularity, as reactions are readily		re readily
<i>O</i> -acylation to ester	5	4%	scaled up, and worked up.		
Other	7	5%	 Coupling reagents such as carbodiimides are frequently used for early development, not later since they are sensitisers and costly. 		
Total	128				
			 Acid chloridos and mix 	kod anhvdrida raut	oc aro

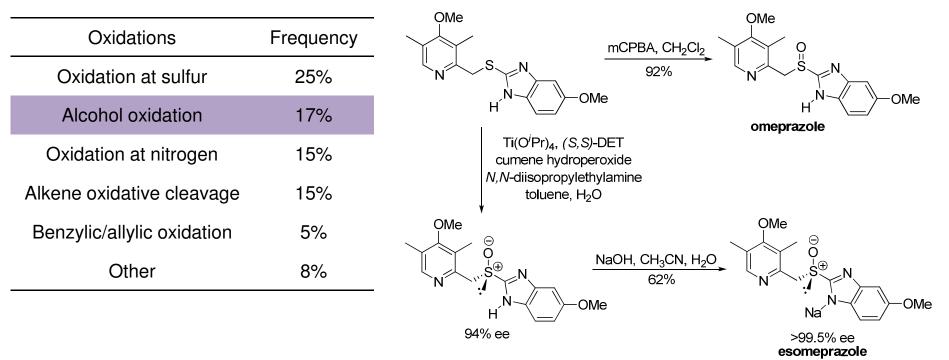

1.12

 Acid chlorides and mixed anhydride routes are economic, not green.

Heteroatom Alkylations and Arylations


Single largest class of reactions – 19% of total.

Typically, 90% of drugs contain N, and an higher proportion contain O.


Oxidation Reactions

Use is low, only 4% of total.

Oxidation Reactions

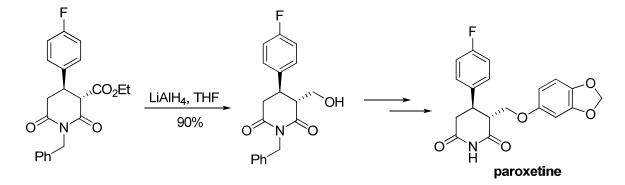
Use is low, only 4% of total.

Oxidation of alcohol to carbonyl rarely used.

Heavy metals used in most of theses cause problems in removal, must be present <10 ppm levels.

Many oxidizing agents are high energy species, giving rise to thermal hazards at scale.

Reduction Reactions

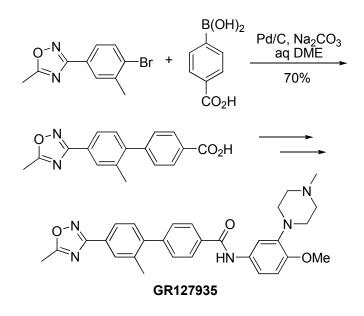

Used more than oxidations, 9% of total.

Catalytic hydrogenation over precious metal catalysts (Pd, Pt, Ni) – 47%. Hydride (LiAlH₄, NaBH₄ and DIBALH) – 32%. Borane – 10%.

Reductive amination done with NaBH₃CN or Na(OAc)₃BH at early stage, superseded with catalytic hydrogenation over appropriate catalyst at industrial scale.

Catalytic hydrogenation over H₂ gas is most atom efficient process, should be developed for all reductions.

Catalytic hydrogenation strikingly absent from reduction of carboxylic acid derivatives – huge potential.


C-C Bond Forming Reactions (11%)

	Number	Frequency
Pd catalysis	26	22%
Suzuki	13	
Heck	7	
Ester condensation	16	14%
Organometallic	14	12%
Friedel-Crafts	12	10%
Other	48	41%
Total	116	

Popularity of Suzuki derived from:

- Easy accessibility of two components.
- Convenient reaction conditions.
- Broad functional group tolerance.
- Easy removal of the inorganic by-product.

Although Pd removal can be problematic.

So much for the trivia.

Now for the stuff that a lot of us would be doing in the near future...

(1) Analysis of the Reactions used for the Preparation of Drug Candidate Molecules, Carey, J. S. (GSK); Laffan, D. (Astrazeneca); Thomson, C. (Astrazeneca); Williams, M.T. (Pfizer) *Org. Biomol. Chem.* **2006**, *4*, 2337.

(2) Industrial Methods for the Production of Optically Active Intermediates, Hauer, B. (BASF) *et al. Angew. Chem. Int. Ed.* **2004**, *43*, 788.

(3) The Chemistry IgNobel Prizes.

Amino Acids

Carboxylic Acids

Amines

Amino alcohols

Alcohols

Epoxides

Amino Acids

Carboxylic Acids

Amines

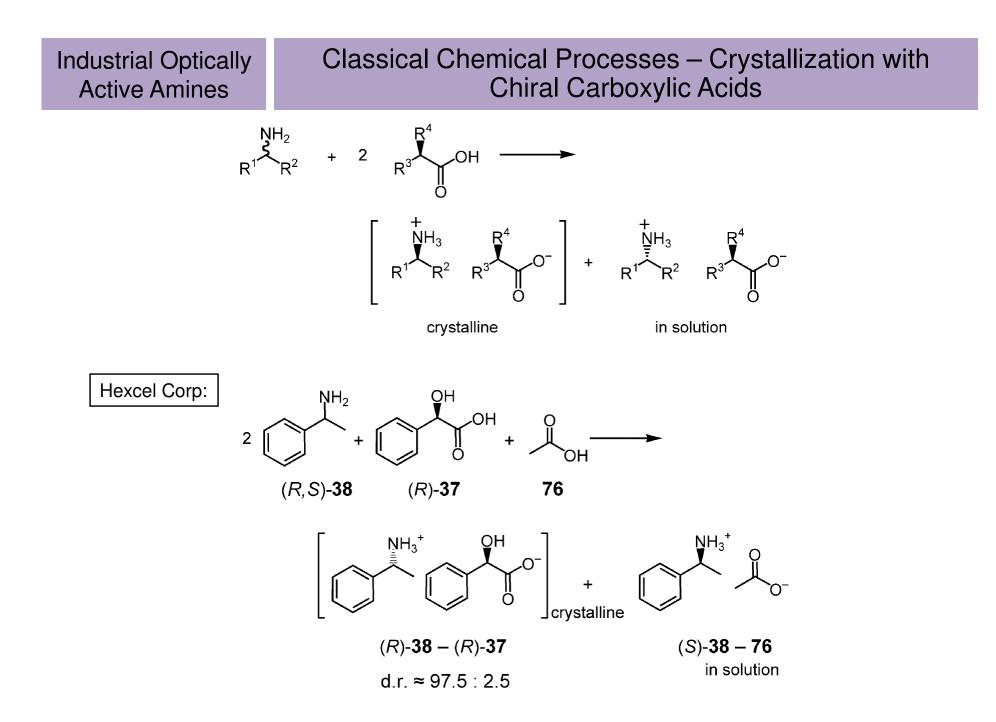
Amino alcohols

Alcohols

Epoxides

Amino Acids

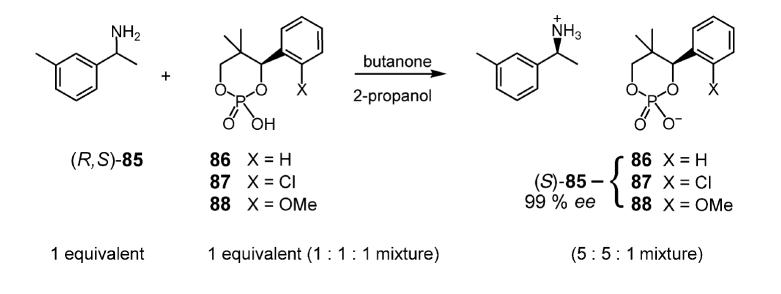
Carboxylic Acids


Amines a) Classical chemical processes.

b) Biotechnological processes.

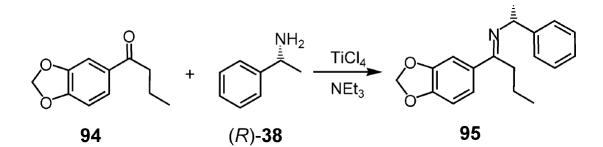
Amino alcohols

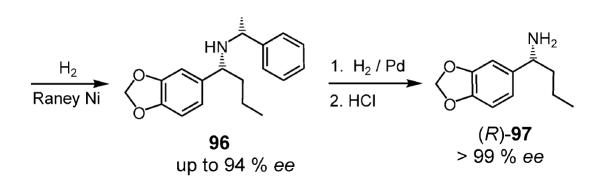
Alcohols


Epoxides

Industrial Optically Active Amines

Classical Chemical Processes – Dutch Resolution (DSM & SynCom BV)


A mixture of several optically active acids is used, whereby the salt precipitates that contains not *one*, but *several* acid anions.



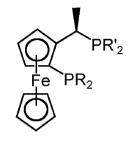
Industrial Optically Active Amines

Classical Chemical Processes – Reduction of C=N Bonds

DuPont Pharmaceutical Company:

Classical Chemical Processes – Reduction of C=N Bonds

Solvias and Avecia Ltd.:

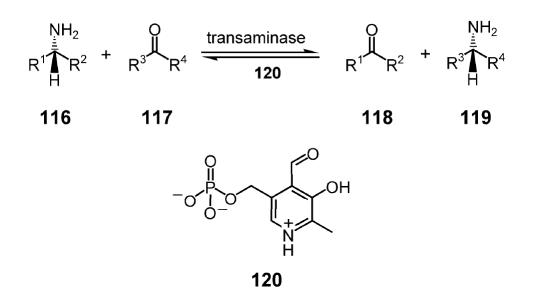

Industrial Optically

Active Amines

ΗŅ

105

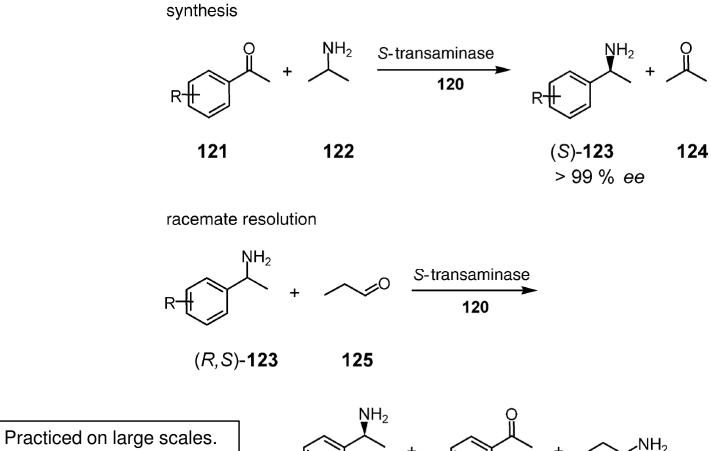
108



110

up to 99 % ee

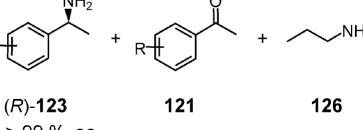
Biotechnological Processes – Transaminations (Celgene)



Industrial Optically

Active Amines

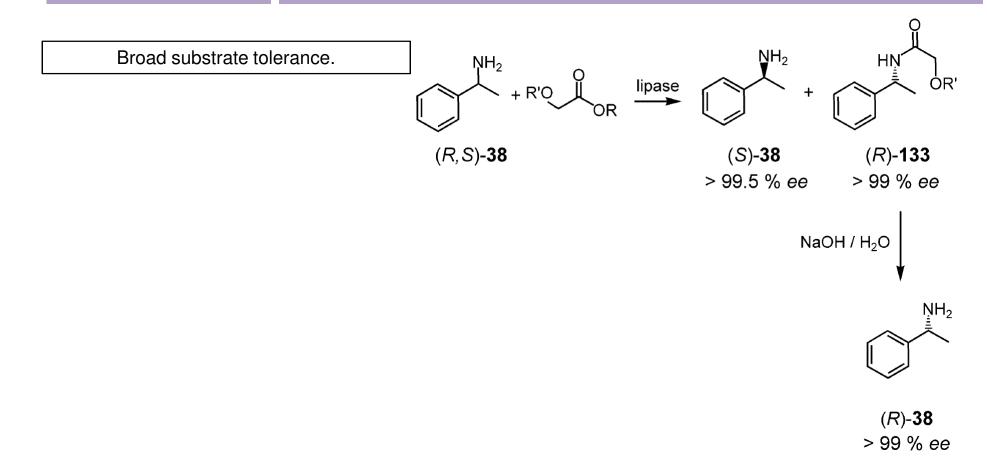
R- and *S*- selective transaminases afford both enantiomers of **119**.


Biotechnological Processes – Transaminations (Celgene)

Variety of substrates.

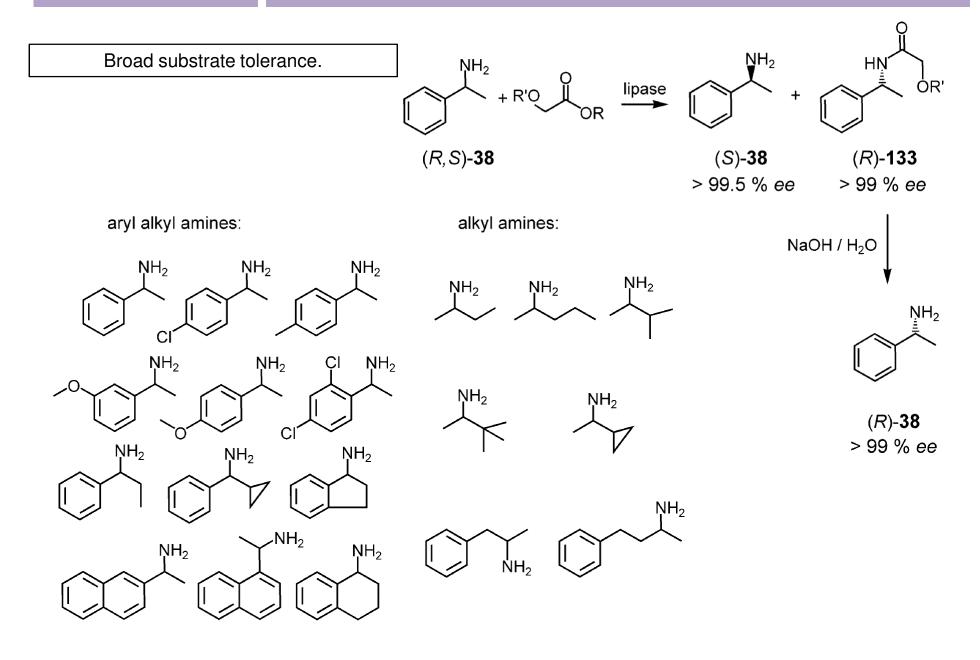
Industrial Optically

Active Amines

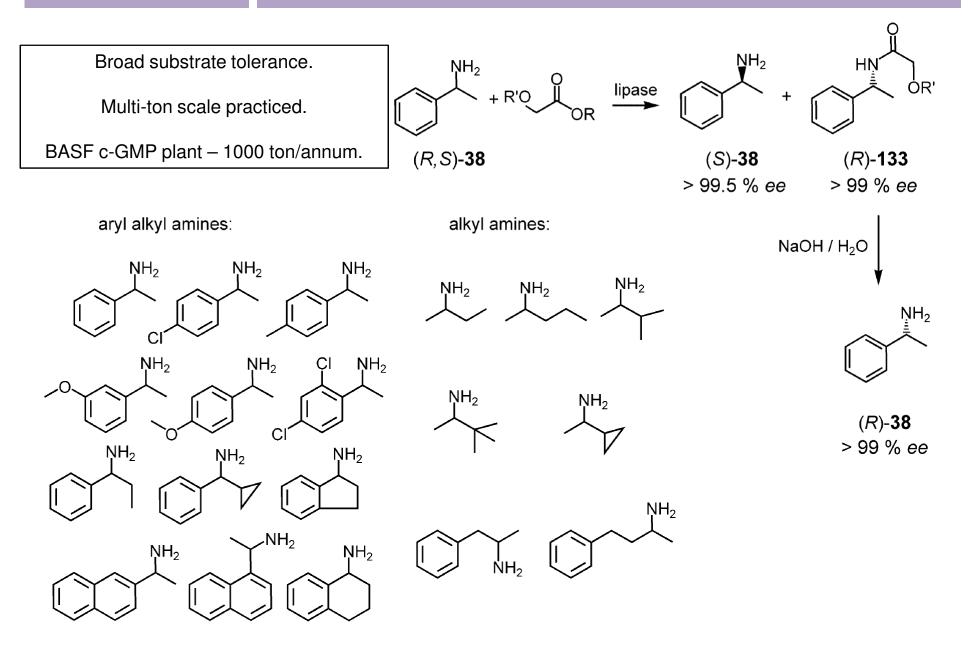


> 99 % ee

R


Biotechnological Processes – Kinetic Resolutions (BASF)

Industrial Optically Active Amines


Biotechnological Processes – Kinetic Resolutions (BASF)

Industrial Optically Active Amines

Industrial Optically Active Amines

Biotechnological Processes – Kinetic Resolutions (BASF)

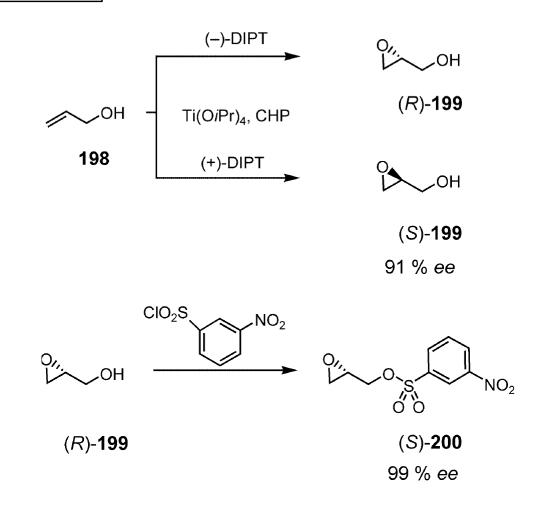
Amino Acids

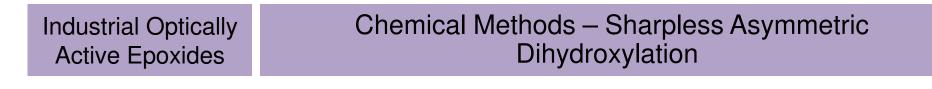
Carboxylic Acids

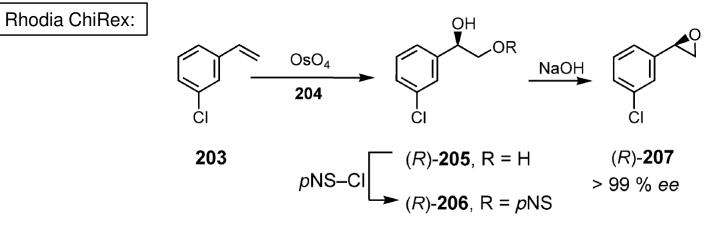
Amines

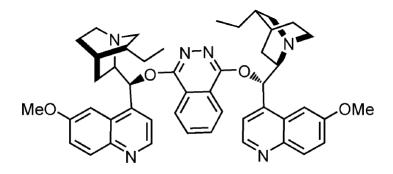
Amino alcohols

Alcohols

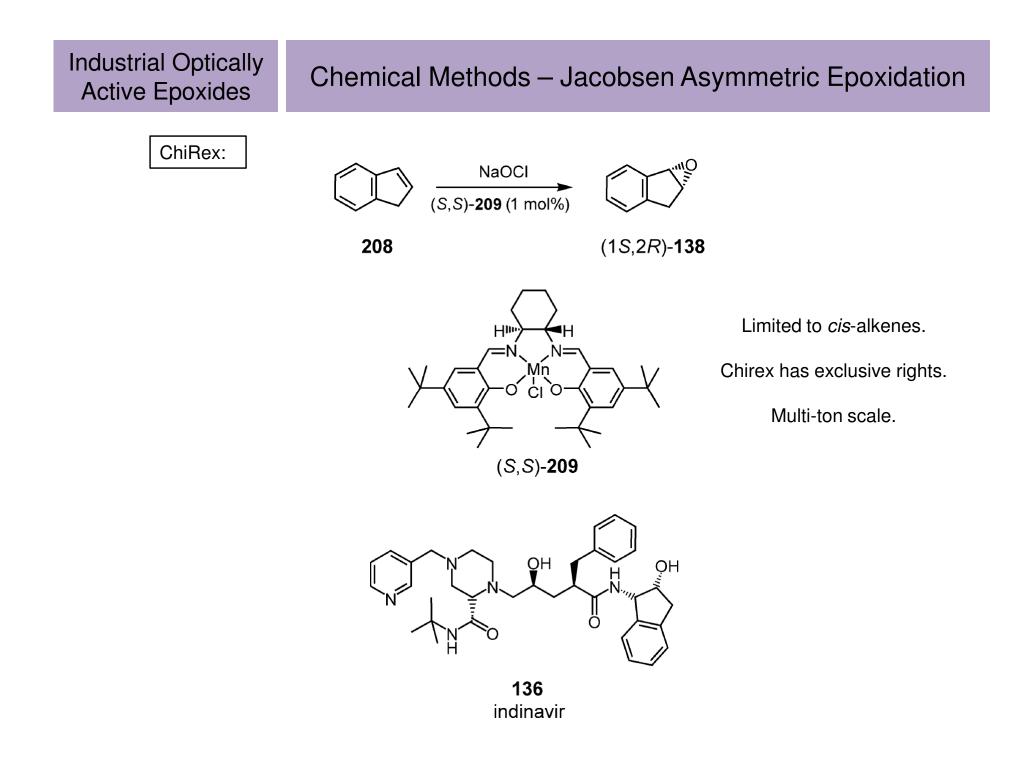

Epoxides a) Chemical methods

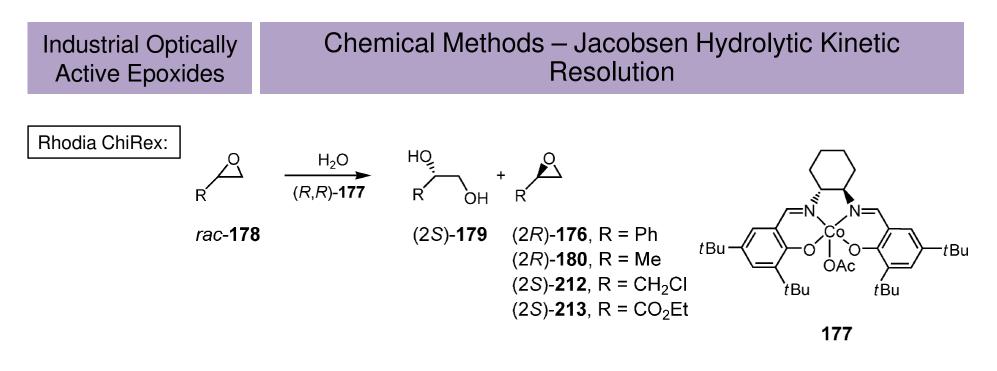

b) Biotechnological processes.


Industrial Optically Active Epoxides


1986 - Breakthrough for industrial applications – Discovery that upon addition of mol. sieves, only catalytic amounts of the titanium tartrate complex were required.

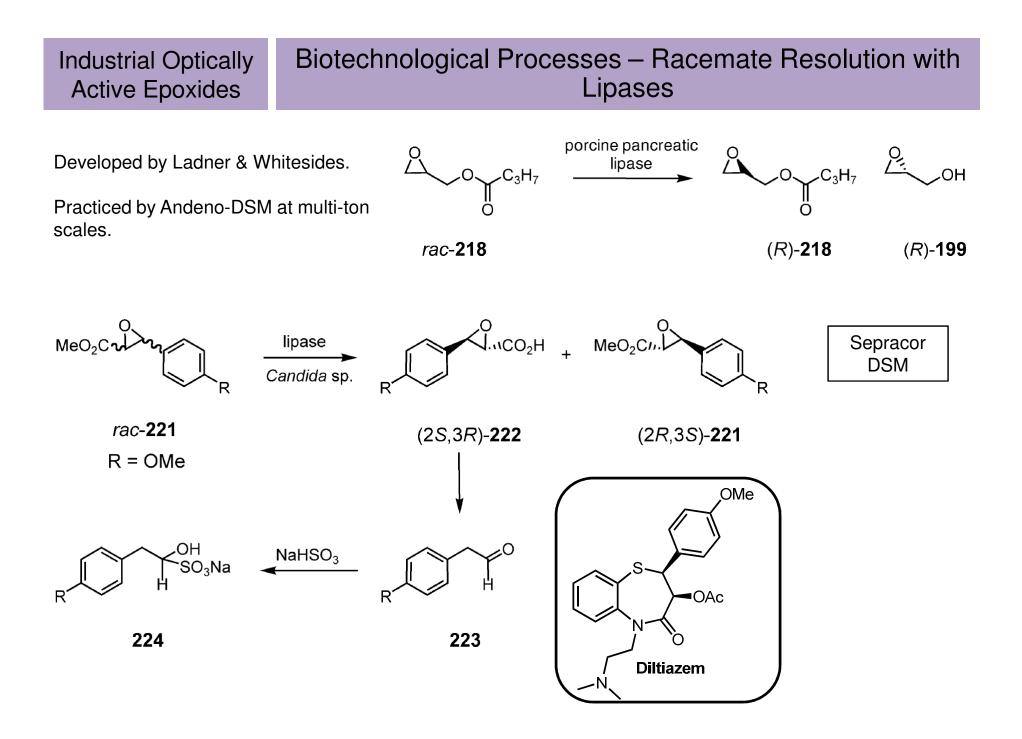
Arco Chemical / PPG-Sipsy:

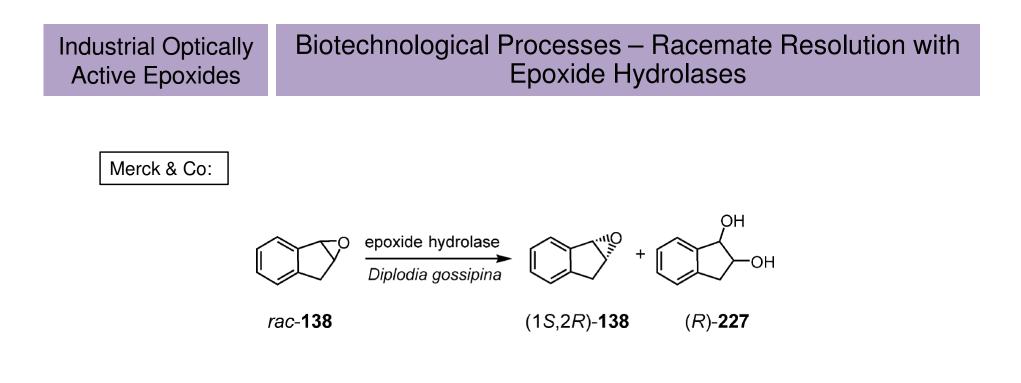


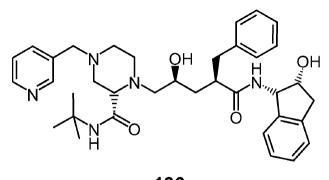


204

100 - 4000 L scale.

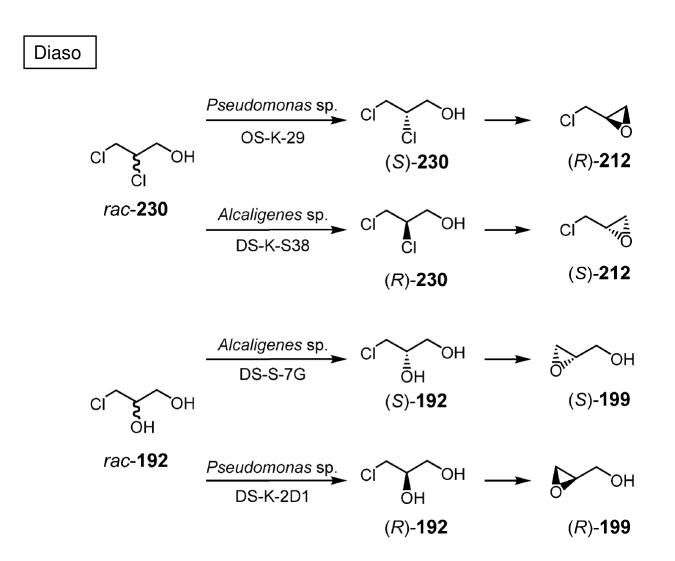



>99% ee and 40-48% yields.


Shown examples practiced at ton scales.

Daiso – a producer of similar intermediates by microbial resolution – recently announced a change to the Jacobsen technology – 50 ton/annum production capacity.

Licensed from ChiRex, which supplies catalyst.



136 indinavir

Biotechnological Processes – Racemate Resolution with Microbial Methods

Industrial Optically

Active Epoxides

Enough of the serious chemistry. The fun part now!

Sorry Ding, no dirty pictures...

(1) Analysis of the Reactions used for the Preparation of Drug Candidate Molecules, Carey, J. S. (GSK); Laffan, D. (Astrazeneca); Thomson, C. (Astrazeneca); Williams, M.T. (Pfizer) *Org. Biomol. Chem.* **2006**, *4*, 2337.

(2) Industrial Methods for the Production of Optically Active Intermediates, Hauer, B. (BASF) *et al. Angew. Chem. Int. Ed.* **2004**, *43*, 788.

(3) The Chemistry IgNobel Prizes.

Improbable Research

That is the name of the organization.

They publish a journal called: Annals of Improbable Research, and administer the IgNobel Prizes.

IgNobel - play on the word "ignoble" and the name "Nobel".

"Honor achievements that first make people laugh, and then make them think."

The ceremony takes place in Sanders Theator, Harvard University.

Winners travel at their own expense.

"The prizes are handed out by genuine, genuinely bemused Nobel Laureates, all before a standing room only audience of 1200 people."

Lavish, fun-filled ceremony!

10 different fields.

"The IgNobel prizes are arguably the highlight of the scientific calender!" – Nature.

www.improbable.com

The Chemistry IgNobel Prizes

Year	Name	Awarded For
2007	Yamamoto M. (International Medical Center, Japan)	Extraction of vanillin – vanilla flavor and fragrance – from cow dung

The Chemistry IgNobel Prizes

Year	Name	Awarded For
2007	Yamamoto M. (International Medical Center, Japan)	Extraction of vanillin – vanilla flavor and fragrance – from cow dung
2006	Mulet A., Benedito J. J., Bon J. (University of Valencia, Spain) and Rosselló C. (University of Illes Balears, Spain)	Ultrasonic Velocity in Cheddar Cheese as Affected by Temperature, <i>J. Food Sci.</i> 1999 , <i>64</i> , 1038.

The Chemistry IgNobel Prizes

Year	Name	Awarded For
2007	Yamamoto M. (International Medical Center, Japan)	Extraction of vanillin – vanilla flavor and fragrance – from cow dung
2006	Mulet A., Benedito J. J., Bon J. (University of Valencia, Spain) and Rosselló C. (University of Illes Balears, Spain)	Ultrasonic Velocity in Cheddar Cheese as Affected by Temperature, <i>J. Food Sci.</i> 1999 , <i>64</i> , 1038.
2005	Cussler, E. (U. Minnesota) and Gettelfinger, B. (U. Minnesota, U. Wisonsin Madison)	Will Humans Swim Faster or Slower in Syrup?, American Institute of Chemical Engg. J. 2004 , 50, 2646.

Will Humans Swim Faster or Slower in Syrup – 2005 IgNobel Chemistry

http://www.cems.umn.edu/research/cussler/pool/

Selcted Chemistry IgNobel Prizes

Year	Name	Awarded For
2007	Yamamoto M. (International Medical Center, Japan)	Extraction of vanillin – vanilla flavor and fragrance – from cow dung
2006	Mulet A., Benedito J. J., Bon J. (University of Valencia, Spain) and Rosselló C. (University of Illes Balears, Spain)	Ultrasonic Velocity in Cheddar Cheese as Affected by Temperature (<i>J. Food Sci.</i> 1999 , <i>64</i> , 1038).
2005	Cussler, E. (U. Minnesota) and Gettelfinger, B. (U. Minnesota, U. Wisonsin Madison)	Will Humans Swim Faster or Slower in Syrup? (<i>American Inst. Chem. Engg. J.</i> 2004 , <i>50</i> , 2646)
2003	Hirose, Yukio (Kanazawa U.)	Chemical investigation of a bronze statue, in the city of Kanazawa, that fails to attract pigeons.

Selcted Chemistry IgNobel Prizes

Year	Name	Awarded For
2007	Yamamoto M. (International Medical Center, Japan)	Extraction of vanillin – vanilla flavor and fragrance – from cow dung
2006	Mulet A., Benedito J. J., Bon J. (University of Valencia, Spain) and Rosselló C. (University of Illes Balears, Spain)	Ultrasonic Velocity in Cheddar Cheese as Affected by Temperature (<i>J. Food Sci.</i> 1999 , <i>64</i> , 1038).
2005	Cussler, E. (U. Minnesota) and Gettelfinger, B. (U. Minnesota, U. Wisonsin Madison)	Will Humans Swim Faster or Slower in Syrup? (<i>American Inst. Chem. Engg. J.</i> 2004 , <i>50</i> , 2646)
2003	Hirose, Yukio (Kanazawa U.)	Chemical investigation of a bronze statue, in the city of Kanazawa, that fails to attract pigeons.
2000	Marazziti D., Rossi A., Cassano G. B. (U. Pisa), and Akiskal H. S. (UCSD)	Discovery that, biochemically, romantic love may be indistinguishable from having severe obsessive-compulsive disorder. (<i>Pyschological</i> <i>Medicine</i> , 1999 , <i>29</i> , 741)

Selcted Chemistry IgNobel Prizes

Year	Name	Awarded For
2007	Yamamoto M. (International Medical Center, Japan)	Extraction of vanillin – vanilla flavor and fragrance – from cow dung
2006	Mulet A., Benedito J. J., Bon J. (University of Valencia, Spain) and Rosselló C. (University of Illes Balears, Spain)	Ultrasonic Velocity in Cheddar Cheese as Affected by Temperature (<i>J. Food Sci.</i> 1999 , <i>64</i> , 1038).
2005	Cussler, E. (U. Minnesota) and Gettelfinger, B. (U. Minnesota, U. Wisonsin Madison)	Will Humans Swim Faster or Slower in Syrup? (<i>American Inst. Chem. Engg. J.</i> 2004 , <i>50</i> , 2646)
2003	Hirose, Yukio (Kanazawa U.)	Chemical investigation of a bronze statue, in the city of Kanazawa, that fails to attract pigeons.
2000	Marazziti D., Rossi A., Cassano G. B. (U. Pisa), and Akiskal H. S. (UCSD)	Discovery that, biochemically, romantic love may be indistinguishable from having severe obsessive-compulsive disorder. (<i>Pyschological</i> <i>Medicine</i> , 1999 , <i>29</i> , 741)
1999	Makino T., president of The Safety Detective Agency, Japan,	S-Check, an infidelity detection spray that wives can apply to their husbands' underwear.